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Abstract
The self-assembly of rigid three-legged building blocks into polyhedral cages is investigated by
patchy particle simulations. A four-site anisotropic interaction potential is introduced to make
pairs of overlapping legs bind in an anti-parallel fashion, thereby forming the edges of a
polyhedron of pentagons and hexagons. A torsional potential, reflecting an asymmetry or
polarity in the legs’ binding potential, proves crucial for the successful formation of closed
fullerene-like cages. Self-assembly proceeds by a nucleation-and-growth mechanism, with a
high success rate of cage closure. The size distribution of the self-assembled buckyballs is
largely determined by the pucker angle of the particle. Nature explores a similar building block,
the clathrin triskelion, to regulate vesicle formation at the cell membrane during endocytosis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The last decade has witnessed the development of ‘patchy
particles’, large molecules or nanocolloids decorated with
specific interaction sites to target their self-assembly into
aggregates with desirable architectures [1]. These advanced
particles offer the potential to grow materials with specific
structures and according special properties, like diamond
lattices of colloidal particles to create photonic bandgaps [2].
Another promising application is the development of nano-
scale cargo containers that release their contents after a
controlled trigger, e.g. a change in temperature or pH, or
upon entering a diseased cell. Experiments with cleverly
designed DNA strings have already been used for the
‘bottom-up fabrication’ of complex two and three dimensional
structures [3, 4].

The self-assembly properties of patchy particles are
heavily relied upon as a building principle in Nature. A
well-known example is the lipids, whose combination of a
hydrophilic head group and a hydrophobic tail makes them
spontaneously aggregate into membranes that envelope cells
and cell organelles. Another interesting example is the protein
capsids by which viruses transport their genes from one cell
to the next. These examples have in common that their
assembly is readily reproduced and reversible in vitro, while
the sizes of their aggregates differ widely—capsid proteins

often form monodisperse cages of icosahedral symmetry [5, 6]
whereas membranes can adopt virtually any size [7, 8]. An
intermediate example is clathrin, a protein that uses its three
long legs to self-assemble scaffolds next to a lipid membrane,
thereby curving the membrane to eventually create an encaged
vesicle [9–12]. Clathrin plays an important structural and
regulatory role in the production of cargo-laden vesicles at
the cell membrane (during endocytosis) and at the trans-Golgi
network (during exocytosis). Depending on the size of the
cargo, twenty up to several hundreds of these curved and
slightly flexible triskelia self-assemble into wire-cages with
twelve pentagonal and a variable number of hexagonal faces,
with the centre of a triskelion positioned at every vertex and
with edges consisting of four leg segments bound together by
multiple weak interactions [13, 14]. The question of how the
triskelia manage to self-assemble these complex cages, which
proceeds in vitro under slightly acidic conditions without
being facilitated by other proteins or membranes, continues
to intrigue biologists and biophysicists. While clathrin cages
are similar to buckyballs in connectivity [15], both having
vertices bonded to three neighbouring vertices to form a lattice
of pentagons and hexagons, it is evident that clathrins exploit
markedly different interactions.

Computer simulations are increasingly used to investigate
self-assembly processes of patchy particles. This requires
endowing the simulated building blocks with anisotropic or
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Figure 1. Cartoon of the rigid three-legged patchy particle, with the
central A site (red) and three B sites (green) marked by spheres. The
particle’s normal n̂ points along the symmetry axis, and in a cage will
be directed from the centre of the cage outwards. The leg’s polarity
vectors m̂b, of which only one is drawn for clarity, are constructed
following equation (5).

directed interaction potentials, which is achieved through two
alternative routes. In some studies the anisotropic building
blocks are constructed as rigid collections of interaction
sites with isotropic Lennard-Jones interactions [16–21]. This
approach has the advantages that conventional simulation
codes can still be used and it is fairly straightforward to
make complex shapes, such as spheres with multiple patches,
cones and triangular plates. Anisotropic interactions have also
been obtained by multiplying a Lennard-Jones potential with a
function of the relative orientations and relative positions of the
particles [22–28], which has the advantage of strongly reducing
the number of interaction sites. Computer simulations with
these models contribute to understanding the basic building
principles behind the self-assembly of simple and complex
particles, as well as providing an ideal test ground for the
analysis and development of new particle structures without
the cumbersome process of synthesizing the new particle.

In this study, we simulate the self-assembly of rigid three-
legged patchy particles, as illustrated in figure 1, into various
large polyhedral cages. The model is inspired by the clathrin
triskelion and by the notion that patchy particles offer the first
promise of simulating the self-assembly of clathrin cages. For
simplicity, we here assume that the legs are straight and hence
there will be only two anti-parallel legs running along every
lattice edge, see figure 2. A minimum model with the desired
building capacities is introduced in sections 2 and 3, where it
is shown that a remarkably simple force field suffices. The
dependence of the assembly process, and the distribution of
cages, on the details of the simulation model are discussed in
section 4. The main conclusions of this study are summarized
in section 5, along with an elaboration on their implications
for the clathrin protein and man-made triskelia with similar
assembly properties.

2. Model

With the complex clathrin triskelion and its intriguing self-
assembly capabilities in mind, we here take a reductionist’s
point of view and construct a patchy particle model with three
straight thin legs that bind in anti-parallel alignment. The
simplest building block design, in our opinion, then involves
a combination of both patchy particle approaches mentioned
in section 1, namely a rigid unit with several anisotropic
interaction sites. Our simulation model, illustrated in figure 1,

Figure 2. Snapshot of the smallest self-assembling cage, a
dodecahedron containing twenty particles, illustrating the
anti-parallel alignment of the two legs along every edge. The legs are
coloured in red and green to highlight the positions of the A and B
sites, respectively. The legs of a clathrin triskelion are curved and
twice as long, enabling them to reach from one vertex to the
next-nearest vertex and consequently results in four legs running
along every edge.

comprises three straight thin legs of length σ , each starting
at the central A site with the same ‘pucker’ angle χ relative
to the symmetry axis n̂ and terminating at a B site. Since
the small excluded volumes of the thin legs are expected to
be of limited consequence to the thermodynamic properties,
are a considerable complication to the assembly process, are
time consuming to calculate numerically and are laborious to
implement in a simulation code [29], we have chosen not to
include them in the current model but to keep the particles as
simple as possible for the time being.

The anti-parallel binding of the two legs forming a lattice
edge, see figure 2, places the bth B site of particle i near
the A site of particle j and simultaneously places the b′th B
site of particle j near the A site of particle i , with b, b′ ∈
{1, 2, 3}. The resulting large contact area between the two
legs results, for clathrin triskelia, in many weak interactions
that collectively from a strong leg–leg interaction, with the
distribution of the interaction sites and/or their discriminating
binding properties giving rise to the preference for anti-
parallel binding. One may, of course, reproduce these binding
characteristics in the simulations by modelling the legs as
series of weak interaction sites, but a similar result is achieved
at considerably lower computational costs by the introduction
of a four-site interaction potential:

φ = −ε f ( 1
2 |xib − x j0| + 1

2 |x jb′ − xi0|). (1)

Here ε is a positive number determining the strength of the
bond, xi0 and xib are the positions of the A and bth B site of
particle i , respectively, and the vertical bars | · · · | denote the
length of a vector. The dependence of the potential on the mean
distance rib, jb′ between the unlike sites of the bth leg of particle
i and the b′th leg of particle j is conveniently chosen as

f (rib, jb′ ) = tanh[−α(rib, jb′ − rc/2)]
2 tanh[αrc/2] +1

2
for rib, jb′ � rc

(2)
and f (rib, jb′) = 0 beyond the cut-off distance rc. As illustrated
in figure 3, the function f smoothly passes from unity at
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Figure 3. Plot of the four-site interaction potential φ, as defined in
equations (1) and (2), against the average distance rib, jb′ between the
bth leg of particle i and the b′th leg of particle j , for a cut-off radius
rc = 0.4σ , at three values of α (in units of σ−1).

zero distance, through a symmetry point at rc/2, to zero at
the cut-off distance, with the parameter α tuning the shape
from a straight line for small α to a step function for large
α. This potential combines the desired properties—pairs of
legs bind with maximum overlap of their contact areas and
in anti-parallel orientation—by bringing together the opposite
ends of the legs. Note that changes in the angle between two
neighbouring legs, or a sliding motion of one leg along the
other, will affect the binding energy.

In the absence of excluded volume interactions, two anti-
parallel legs binding together do not exclusively occupy and
thereby monopolize their counterpart’s binding capabilities.
Hence, a third aligned leg (the b′′th leg of particle k in the
sketch of figure 4) approaching an anti-parallel pair of legs
will bind to the oppositely aligned leg (leg b of particle i ) of
the pair, unopposed by the co-aligned leg (leg b′ of particle
j ) of the pair. This undesired form of several legs binding
along a lattice edge occurs readily in simulations with the
purely attractive potential φ. To suppress triplet formation,
and thereby multiplet formation, we want to create a situation
whereby the repulsion between the third leg (kb′′) and its
parallel counterpart of the pair ( jb′) outweighs the attraction
between the third leg (kb′′) and the anti-parallel leg of the
pair (ib). This is achieved by supplementing the attractive
interactions φ with a repulsive four-site potential φ̄, which we
also choose to be of the form of equations (1) and (2), but now
based on the average distance between the like interaction sites
of the two competing legs,

r̄ jb′,kb′′ = 1
2 |x j0 − xk0| + 1

2 |x jb′ − xkb′′ |. (3)

Here, bars are introduced to distinguish the argument r̄ and
parameters ε̄, ᾱ and r̄c of the repulsive potential φ̄ from their
counterparts in the attractive potential φ, with both potentials
having the same functional form. From the potential energy
surface for three legs, as illustrated in figure 4, we conclude
that suitable conditions are obtained for ε̄ = −10ε, ᾱ = α/5
and r̄c = 2rc. The total potential energy of a collection of N

Figure 4. The potential energy surface for a set of three co-planar
aligned legs, see inset, as a function of the distances rib, jb′ and rib,kb′′
separating the anti-parallel pairs. The parameters of the repulsion
between the parallel legs jb′ and kb′′ have been tuned to permit the
two anti-parallel legs ib and jb′ to bind when the second parallel leg
kb′′ is remote, while preventing binding of ib with either anti-parallel
leg if jb′ and kb′′ approach each other too closely. A cross-section of
the potential along rib, jb′ , at constant rib,kb′′ � 1.6σ , yields the
attractive potential of figure 3 for the interacting ib − jb′ pair; a
similar result is obtained for the ib − kb′′ pair by a cross-section at
constant rib, jb′ � 1.6σ .

particles is then calculated as

� =
N−1∑

i=1

N∑

j=i+1

3∑

b=1

3∑

b′=1

{φ(rib, jb′) + φ̄(r̄ib, jb′)}, (4)

where the summation runs over all leg–leg combinations and
includes both the parallel and anti-parallel orientation for every
pair of legs. Note that, for the employed simulation parameters,
the attractive and repulsive potentials are mutually exclusive
for any given pair of legs.

The self-assembly process is simulated using the
Metropolis Monte Carlo method [30, 31]. In every Monte
Carlo (MC) step, the centre of mass of a randomly selected
particle is subjected to a random 3D translation to a new
position within a box of sides 0.25σ , centred around its
old position, followed by a rotation around a random axis
by a random angle between plus and minus 0.5 rad. The
new configuration is then accepted with a probability p =
min[exp(−β	�), 1], where 	� denotes the energy change
incurred in the trial move and β = (kBT )−1 with Boltzmann’s
constant kB and temperature T . A grid list [30, 31] and a look-
up list of leg–leg energies are used to accelerate the calculation
of 	�, with updates added after every accepted trial move. A
typical simulation follows N = 1000 or N = 10 000 particles
at a number density ρ = 10−3σ−3 in a cubic box with periodic
boundary conditions. The interaction cut-off rc is set at 0.4σ

and the steepness coefficient α to 2σ−1. The leg–leg attraction
strength ε has been varied from 2kBT to 50kBT , and the pucker
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Figure 5. Snapshots showing several self-assembled structures. The ‘hexagonal barrel’ of 36 particles (left) is produced by triskelia with a
pucker angle of 104◦, the buckyball of 60 particles (middle) evolves from triskelia with χ = 101◦. The conical fragment of ‘chicken-wire’
contains particles with χ = 95◦. The strong correlation between pucker angle and cage size, see also figures 7 through 9, is discussed in the
main text.

angle χ from 90◦ to 110◦, to explore their influences on the
assembly process.

3. Polarity

The simulations show that the particles readily aggregate
into clusters of various sizes, provided ε exceeds a threshold
binding energy, but the assembled structures are highly
irregular in shape. Varying the parameters of the model did not
resolve this issue, thereby naturally leading to the conclusion
that self-assembly into closed cages requires an extension of
the force field. Visual inspection of the grown structures,
using the visual molecular dynamics (VMD) package [32],
confirmed that the legs bind in an anti-parallel fashion, with
exactly two legs per lattice edge, but that the torsional angles
around these edges vary wildly. The symmetry axes or normals
n̂i of neighbouring particles show little correlation in the
sprawling aggregates, whereas they ought to be nearly parallel
in order to form a closed cage. We therefore now augment the
model with an anisotropy in the leg–leg interaction, to promote
the orientational alignment of neighbouring particles.

In the extended model, each leg is endowed with a polarity
vector m̂ib to introduce a rotational asymmetry in the leg–leg
interactions. This solution is motivated by the experimental
observations that clathrins in a cage consistently present the
same faces of their legs to their neighbours, and hence that
their interaction sites are non-uniformly distributed over the
surface of the legs [9–14]. We here make the arbitrary choice
of assigning front–back asymmetry to the legs, see figure 1, by
defining the polarity vector of the bth leg of particle i as the
cross product of the particle’s normal with the leg’s end-to-end
vector,

m̂ib = n̂i × (xib − xi0)

|n̂i × (xib − xi0)| . (5)

In an ordered cage, as depicted in figure 2, the two anti-parallel
legs in an edge have their polarities pointing in opposite
directions. This suggests modifying the attractive potential of
equation (1) into a direction specific interaction of the form

φ = −ε f (rib, jb′)g(m̂ib · m̂ jb′), (6)

where the variation with the dot product μ of the polarities is
chosen as

g(μ) =
{

0 for μ > 0

−μ for μ � 0.
(7)

This potential induces a preference for anti-parallel legs to
bind with their polarities in anti-parallel fashion, i.e. with the
largest negative μ, and thereby strongly promotes successful
cage assembly over random aggregation, as will be discussed in
the next section, while anti-parallel legs with parallel polarities,
i.e. positive μ, do not bind at all. Dihedral interactions are also
being employed in patchy particle simulations of virus capsid
assembly, either implicitly by modelling a capsid protein as a
rigid unit of several particles [18, 20, 21] or explicitly as part
of the interaction potential between particles representing one
capsid protein each [22, 24], but the crucial importance of the
dihedral for the assembly process has thus far received little
attention. Note that the repulsive potential between parallel
legs remains independent of the legs’ polarities.

4. Results

The model with anisotropic leg–leg interactions proves very
capable of self-assembly into closed polyhedral cages. Several
typical cages, grown at different pucker angles, are shown
in figures 2 and 5. The closed cages have F5 pentagonal
and F6 hexagonal faces; although other faces are in principle
also possible, the only exceptions detected by our analysis
software throughout all simulations are a few heptagons. One
readily shows that the number of vertices equals the number
of particles, V = N , that the number of edges is given by
E = 3N/2, and that this number is related to the number
of faces by E = (5F5 + 6F6)/2. In combination with
Euler’s famous polyhedron formula, V − E + F = 2, this
yields the well-known results that closed cages contain exactly
twelve pentagons, a variable number of F6 = N/2 − 10
hexagons and an even number of particles [33]. The snapshots
suggest that a larger pucker angle χ yields smaller cages, and
hence that F6 and N are functions of χ , as will be discussed
below. Henceforth two particles are regarded as ‘bound’ if their

4
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Figure 6. Phase diagram of the self-assembly behaviour against the
leg–leg binding energy ε and the pucker angle χ of the legs. On the
left-hand side the interactions are too weak to achieve clustering
within ∼1010 MC steps, while the very ‘sticky’ particles on the
right-hand side result in the rapid formation of many incomplete
structures. Closed cages, i.e. clusters with a particle at every vertex
and two anti-parallel legs along every edge, are produced at a high
success rate in an approximately triangular intermediate region of
parameter space, while they are rare in the other two regions.

interaction energy is more negative than −2kBT and a cage is
defined as ‘closed’ if every particle in the cluster is bound to
three neighbours.

The phase diagram in figure 6 shows the self-assembly
behaviour of the particles as a function of the two most
important model parameters, namely the binding energy ε

and the pucker angle χ . For the low concentrations studied
here, a binding energy of at least ∼15kBT is required for
the formation of multiple-particle aggregates. A low binding
energy reduces the probability of several particles to unite
into a critical nucleus, as well as promotes the probability
of aggregates (including pre-formed closed cages) to fall
apart into monomers. A high binding energy enhances the
aggregation of particles, but too strong interactions make
the particles cluster so rapidly that numerous cage fragments
are being formed until the free monomers are depleted; the
subsequent pairing of the diffusing clusters proceeds very
slowly, with the lack of internal rearrangements making the
combination of several erratic fragments into a closed cage a
highly improbable event. Closed cages are only formed with a
high success rate at intermediate binding energies, ε ∼ 20kBT ,
and for pucker angles exceeding ∼95◦. The latter limit arises
because closed cages rapidly increase in size with decreasing
χ , and thus exceed the available number of particles for χ

approaching 90◦.
The growth of closed cages from initially randomly

distributed particles, under conducive conditions, proceeds
by a nucleation-and-growth mechanism. This is clear from
watching movies of the simulations, where small aggregates
of a few particles are continuously being assembled and
disassembled. Occasionally one of these aggregates crosses
the transition state to start a steady growth to a stable cage
structure. At the current density and binding energies, a
newly created box of 1000 particles typically develops several
simultaneously growing clusters. Later on in the simulations,

Figure 7. Distributions of cluster sizes after ∼1010 MC steps with
∼30 000 particles, for three different pucker angles and ε = 20kBT .
The number of small multimers on the left decays quickly with the
cluster size, with the dashed line serving as a guide to the eye. The
three peaks on the right, marked with arrows, clearly indicate that the
average size of the self-assembled cages decreases with increasing
pucker angle.

when a considerable fraction of particles has been bound
in clusters, the chances of forming a next stable cluster
are considerably reduced. This drastic slowing down of
the nucleation rate makes it difficult to assess whether an
equilibrium state has been attained by the time the simulations
are terminated.

Typical distributions of cluster sizes at the end of the
simulations are shown in figure 7 for three puckers at ε =
20kBT . For every χ , just over half of the ∼30 000 particles
are still unbound after (1 − 10) × 1010 MC steps. There
are numerous small aggregates, dimers, trimers etcetera, but
their counts decline rapidly with increasing multimer size and
drop to one or zero beyond N ∼ 10. The plot contains
several pronounced peaks at larger cluster sizes, corresponding
to near-spherical cages, with the centre of the peak shifting to
larger cages with decreasing pucker angle. Closer inspection of
these clusters, both visually and by analysis software, reveals
that many of them are completed polyhedrons, with a particle
centred at every vertex and two anti-parallel legs along every
vertex; these closed clusters are singled out in figure 8. The
largest non-closed clusters are typically one or two particles
short of a closed polyhedral structure. Occasionally we observe
partly intertwined cages, with the legs of one cage sticking
through the open faces of the other cage and vice versa, and
in one simulation a cage was found to completely envelope
another cluster; these few exceptional structures have for
clarity been excluded from the distributions in figure 7.

The size distributions of closed cages at five different
puckers are presented in figure 8. With decreasing pucker
angle, the distribution shifts to higher N and becomes broader,
indicating that there is more variation in the assembled
structures. At the highest pucker angle, χ = 110◦, only
icosahedral clusters are produced (not shown in figure 8). For
χ = 105◦ eight different cluster sizes are observed; the gap at
N = 22 arises because it is impossible to create a closed cage
with twelve pentagons and one hexagon. A visual inspection
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Figure 8. Distributions of cluster sizes for closed cages that
self-assembled from ∼30 000 particles in ∼1010 MC steps with
ε = 20kBT at five different pucker angles.

of a dozen N = 28 cages indicates that most of these cages
have identical structures, i.e. configurations of hexagonal and
pentagonal faces. The questions why a small subset of cages is
much more abundant than the numerous other permitted cage
structures, and what property sets these few cages apart from
the rest, are currently under investigation. One possibility is
that these few structures are thermodynamically more stable,
but it is equally well conceivable that the kinetics of the
growth process directs the assembly towards certain preferred
structures. Independent of cage size, the average potential
energy of the closed cages typically lies between 80% and
90% of the maximum attainable energy of 3εN/2. Figure 8
furthermore shows that the total number of assembled cages
decreases with increasing pucker angle. This decline may
have many causes, including variations in cage stability and
chemical potential with χ , a similar reduction in free monomer
concentration is achieved by fewer large cages, different
assembly rates, and an increased probability of defects in larger
cages.

The average size of the closed cages is plotted in figure 9
against the pucker angle. The graph shows that the average
cluster size steadily increases with decreasing pucker angle,
starting with N = 20 for dodecahedra grown at a pucker
angle of 110◦ and ending at 〈N〉 ∼ 70 for χ = 100◦.
Even larger aggregates were formed in simulations with lower
pucker angles, like conical and flat fragments of ‘chicken-
wire’ at 95◦ and 90◦ respectively, see figure 5, but these did
not form closed cages and are therefore excluded from the
plot. Clearly, 〈N〉 will diverge for χ approaching 90◦. An
approximate theoretical description of the data can be derived
using Descartes’ formula, stating that the total angle deficit of
a polyhedron is 4π [33]. The angle deficit of a vertex may be
idealized as 2π minus three times the leg–leg angle, which is
readily calculated from the pucker angle. Multiplication by the
number of vertices then yields

N

[
2π − 3acos

(
3 cos2 χ − 1

2

)]
= 4π. (8)

This approximation for the average number of particles per
closed cage lies systematically higher than the simulation

Figure 9. Average size 〈N〉 of self-assembled closed cages, as a
function of the pucker angle χ , with the error bars denoting standard
deviations. The solid line, representing equation (8), follows from a
purely geometrical consideration.

results, see figure 9. In this simple derivation we have ignored
that the two legs along an edge are often not perfectly aligned
and, consequently, that the faces of the cage need not be flat,
while thermodynamic and kinetic properties of the assembly
process may also contribute to the observed difference.

5. Discussion and conclusions

The simulations have clearly highlighted the two key
ingredients for the self-assembly of three-legged puckered
particles into closed cages, namely anti-parallel binding of
the legs and a dihedral preference around the leg–leg bond.
The condition of anti-parallel binding of legs can be met
in an experimental particle, and probably is met in the
clathrin triskelion, by employing a series of weak interaction
sites along the legs. One readily envisages how a non-
equidistant distribution of sites, possibly in combination with
discriminating interaction sites, makes anti-parallel binding
highly favourable over parallel binding. The desired polarity
of the legs may be created by concentrating the interaction
sites on one face of the legs, as this will force the legs to
face each other with their ‘patchy’ sides and thereby induces
the dihedral preference that proved so crucial in the formation
of cages. The concentration of binding sites on one side
of the leg simultaneously creates a situation in which two
bound legs are likely to prevent, by shielding the patchy
sides with their excluded volumes, a third leg from attaching
to the pair. We thus see how a collaborative effort by
many short-range forces like Van der Waals and hydrophobic
interactions, possibly assisted by hydrogen bonding and salt
bridges, suffices to promote the self-assembly of large clathrin
cages. In fact, long-range interactions such as magnetic or
electric dipoles (with their dipolar moments arranged to create
the desired torsional potential) are probably disadvantageous
for the assembly process, since they will attract too many legs
to the vertices and thereby form erratic aggregates, as observed
in the early simulation model based on attractive interactions
only.
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Whether the polarity of the legs distinguishes between
front and back of the legs, as in the current simulations, or
between top and bottom, is of little consequence. Simulations
employing the latter choice (and a potential g that promotes
parallel polarities) indicate that a different definition of the
polarity vector m̂ib will slightly alter the distribution of
angles between neighbouring legs, but does not to affect the
self-assembly characteristics as long as a sufficiently strong
dihedral interaction orients the legs (and thereby the normals)
of neighbouring particles in a lattice. The assembly process
appears not to be sensitive to the exact form of the dihedral
potential either, as cages are still being formed after replacing
the smooth dihedral definition of g(μ) in equation (7) by the
step function g(μ) = (μ − |μ|)/(2|μ|).

A subtle difference between the simulated particles and
real particles results from the absence of excluded volume
interactions in the former: in the simulations the legs merely
have to be oriented properly to attain the strongest interaction,
while in the above scenario of legs with localized interaction
sites the legs have to be oriented appropriately as well as
being positioned properly relatively to each other. A related
problem arises from the requested ability of the particles to
form closed loops with both even (six) and odd (five) particles,
with the latter obviously disallowing alternating sequences.
We note that these conditions pose design restrictions on the
locations of the interaction sites along the legs, and possibly
also necessitate slightly curved legs to avoid packing problems
due to overlapping legs.

The formation of closed or nearly closed cages proceeds
remarkably efficiently for conducive particle parameters from
a triangular area of parameter space. It is intuitively clear
that growing a cage by randomly combining twelve pentamers
and an even number of hexamers is very unlikely to result
in a closed cage. The simulations indicate, however, that the
random addition of triskelia to the unpaired legs of a growing
cluster—within the restrictions posed by the potential—is
remarkably likely to result in a closed cage. It appears as if
the potential provides an innate guiding mechanism that directs
the growing aggregates through a ‘funnel’ to the (nearly)
closed cages, with the pucker determining the size of the
cages. Both thermodynamic (energetic or entropic preference)
and kinetic properties (availability of binding sites, ease of
closing a five ring) may contribute to ‘steering’ the assembly
process. A detailed discussion of which cluster structures are
permitted, and what feature(s) makes them stand out from
the long list of permitted polyhedra, lies beyond the scope of
the current study. To this effect, we are currently working
on the automated recognition of the over a thousand self-
assembled cage structures; their analysis and a comparison
with theoretical predictions will be presented in a forthcoming
paper.

A peculiar property of Monte Carlo simulations that
surfaced in our simulations, as well as in other MC patchy
particle simulations [34], is that clusters appear to move much
slower than monomers. Some slowing down is expected,
since the diffusion coefficient of an N-mer scales inversely
proportional with N , but the slowing down in the MC
simulations is much stronger. We believe that this is not a

problem in the current study, because the rate of aggregation
at a slowly moving cluster is largely determined by the highly
mobile loose monomers. Slowing down might, however,
introduce artefacts under some conditions, and more advanced
cluster moves are under development to compensate these
effects [35, 36].

We end by noting that the optimum binding energies
in this study, ε ∼ 20kBT , are somewhat larger than the
values of ∼7kBT reported by Wilber et al [25] and (12 −
18)kBT by Hagan and Chandler [24] in their simulations of
nearly-spherical patchy particles forming icosahedral cages
with N = 12 and N = 60, respectively. This difference
probably reflects the lower number density in our simulations
(in this study ρ = 10−3σ−3, versus 0.15σ−3 and (0.04 −
0.5)σ−3 in the two preceding studies, though this comparison
is obviously hampered by the distinct particles used in the three
simulations), which necessitates a correspondingly higher
binding energy to combat the larger loss of translational
entropy by a particle upon binding to a cluster. It would be
advantageous for comparison purposes, across simulations and
with experiments, to eliminate the concentration dependency
by determining the equilibrium constant of the N X � X N

assembly process, which is closely related to the free energy
difference between free monomers and assembled clusters. A
direct calculation of the free energy difference by dedicated
methods [24, 25] would also provide an independent estimate
of a patchy particle analogue to the familiar critical micelle
concentration [7], and a measure for the degree of equilibration
that has been achieved in the simulations—since the dynamics
of cluster assembly and disassembly are fairly slow, it is
currently difficult to judge from the simulations whether
equilibrium has actually be attained. Establishing these free
energies for our three-legged particles is inhibitively computer
time consuming due to the time needed to establish the free
energy of a single cage structure and the large number of self-
assembled structures observed in our simulations.
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